OpenAl

From Competitive
Programming to Al
Reasoning Models

s Alexander Wei Q Oleg Murk

; ‘# Researcher, OpenAl ‘
Il A

Sheryl Hsu

Researcher, OpenAl Researcher, OpenAl

Com petitive Prog ramming Many at OpenAl have backgrounds in
at Open Al competitive programming.

- |
Jakub Pachocki Mark Chen
Chief Scientist, OpenAl Chief Research Officer, OpenAl

|OI’09 contestant IOI'24, 01’22 team leader

OpenAl Confidential and proprietary.

Com petitive Prog ramming Many at OpenAl have backgrounds in
a't Open A| competitive programming.

A few of us are here on-site in Sucre;:

Alexander Wei -y 4 Zheng Shao
IOI’15 contestant ;101’99 contestant

Oleg Murk
IOI’95, I0I'96, 101’97 contestant

Yaroslav Tverdokhlib
|OI’09 contestant

OpenAl Confidential and proprietary.

Com petitive Prog ramming Many at OpenAl have backgrounds in
at Open Al competitive programming.

A few of us are here on-site in Sucre;:

* Alexander Wei -y Zheng Shao
A 10115 contestant =, | 101’99 contestant

) Oleg Murk Yaroslav Tverdokhlib
4 01’95, 101’96, 101’97 contestant -"' |IOI’09 contestant

Several of us work on reasoning —

making models that can think for longer

OpenAl Confidential and proprietary. 4

Competitive Programmers
and Al Research?

1. Constant learning. Al as a field progresses quickly;
you are always learning to think in new ways.

OpenAl Confidential and proprietary.

Competitive Programmers
and Al Research?

1. Constant learning. Al as a field progresses quickly;
you are always learning to think in new ways.

2. Hard problem-solving. That’s research!

OpenAl Confidential and proprietary.

Competitive Programmers
and Al Research?

1. Constant learning. Al as a field progresses quickly;
you are always learning to think in new ways.

2. Hard problem-solving. That’s research!

3. Systematic thinking. Even in deep learning, the right
concepts and theoretical foundations go a long way.

OpenAl Confidential and proprietary.

Competitive Programmers
and Al Research?

1. Constant learning. Al as a field progresses quickly;
you are always learning to think in new ways.

2. Hard problem-solving. That’s research!

3. Systematic thinking. Even in deep learning, the right
concepts and theoretical foundations go a long way.

Every once in a while, | get to solve an algorithm design
problem too!

OpenAl Confidential and proprietary.

Measuring Al Progress with
Competitive Programming

Competitive programming problems are:

1. Difficult — problems require significant
reasoning effort to solve

2. Objective — easily verifiable with
hidden test cases

OpenAl Confidential and proprietary.

Measuring Al Progress with
Competitive Programming

Competitive programming problems are:

1. Difficult — problems require significant
reasoning effort to solve

2. Objective — easily verifiable with
hidden test cases

Exam GPT-4 (no vision)

Codeforces Rating 392 (below 5th)

OpenAl Confidential and proprietary.

10

Measuring Al Progress with

Competitive Programming S
- . 2706 2719
Competitive programming problems are:
1. Difficult — problems require significant 8ot o
reasoning effort to solve .
—
2. Objective — easily verifiable with -
hidden test cases Competition Code
(Codeforces)
1007 89.0
80 & & @
62.0 orb'(0 @é‘\\o e ¥
2 60 - B
Exam GPT-4 (no vision) = SRS
S
2 40 - X
Codeforces Rating 392 (below 5th)
2071 10
0 T T T
gpt4do 01_ ol
preview

OpenAl Confidential and proprietary. 11

Al + Real-world Coding

Progress in reasoning transfers to
real-world programming.

OpenAl Confidential and proprietary.

What should we code next?

In my current project, find a bug in the last 5 commits and fix it

2 monorepo ¥ main

Tasks

Scan the entire repository and flag any variables, parameters, or properties whose n...

Convert non-critical components to React.lazy with Suspense fallbacks

ESLint on every PR and blocks on violations...

mport terminal sizes from terminal_emulator

1% open

o Merged

a

™

Al + Real-world Coding

What should we code next?

In my current project, find a bug in the last 5 commits and fix it|

Progress in reasoning transfers to
real-world programming. e T

Scan the entire repository and flag any variables, parameters, or properties whose n...

Convert non-critical components to React.lazy with Suspense fallbacks

But real-world problems are also much s s on sy skt
more complex ...

-—

Codeforces Div. 2 A Ol problem
0.125 hours 2 hours
(GPT-4, April 2023) (03, April 2025)

OpenAl Confidential and proprietary. 13

Al + Real-world Coding

What should we code next?

In my current project, find a bug in the last 5 commits and fix it|

Progress in reasoning transfers to
real-world programming. e T

Scan the entire repository and flag any variables, parameters, or properties whose n...

Convert non-critical components to React.lazy with Suspense fallbacks

But real-world problems are also much s s on sy skt
more complex ...

D B B —

Codeforces Div. 2 A |OI problem Research breakthrough
0.125 hours 2 hours 8,000 hours
(GPT-4, April 2023) (03, April 2025) (??7)

OpenAl Confidential and proprietary. 14

OpenAl Large Language Models (LLMs)

e Base models: GPT4

Neural networks

Billions of parameters

Trained on GPUs

Transformer architecture

Next word / token prediction loss
Optimized using gradient descent
Pretrained on a subset of Internet

Input

O O 0O O O O O

e Reasoning models: o1, 03
Reinforcement Learning (RL)
Tasks with Verifiers

Hidden

O O O O

Agent

Chain of Thought (COT)
Tool use, eg python
State, Reward
St Tt

Environment

Action
Qs

OpenAl Confidential and proprietary.

15

LLM Chain of Thought Example

Compute k-th Fibonacci number modulo K

Thought for a couple of seconds

e The user is asking about computing the k-th Fibonacci number modulo K. Since they didn’t
provide specific values, I'll explain the efficient fast doubling algorithm. This allows
computing Fibonacci mod K in O(log k) time. I'll include Python code and discuss the
Pisano period and complexity.

©® Done

To compute the k-th Fibonacci number modulo K —that is, find
Fk mod K

efficiently even for very large k—you can use the fast-doubling method, which runs in O(log k) time and

only needs constant extra space. The key identities are:

F2n :Fn (2Fn+1 _Fn)7
Fonyi = Fopy + F5.

Working everything “mod K" at each step keeps numbers small.

N

OpenAl Confidential and proprietary.

16

LLM Performance Scaling

e Pre-training performance scales with:
o Amount of data
o Model size
o Train-time compute

o1 AIME accuracy
during training

100

e RL performance scales with: —

o Amount of tasks - .

. . o
o Traln-’Flme compute g 60 - L e
o Test-time compute S o o
| | S 40 *

e TJest-time strategies: g .

o Multiple samples 20

o Consensus

o Ranking function o4 - —

o 102 107 10°

OpenAl Confidential and proprietary.

train-time compute
(log scale, fraction of maximum flops)

pass@1accuracy

100 -

80 -

60 -

40 A

20 -

0]

o1 AIME accuracy
at test time

1072 107" 100

test-time compute
(log scale, fraction of maximum flops)

17

o1-ioi (September 2024)

e Train custom model for |0l starting from o1

o Programming tasks + Test suites

e Sample 10K solutions

o Split problems into separately gradable parts

e Filter by public tests

e (Generate test cases
o Sample generators from o1

e C(luster solutions
o That produce the same test outputs

e Rank clusters and submit top 50
o Learned ranking function

OpenAl Confidential and proprietary.

350 1

101 Performance by Submission Strategy

362.14

213

156

Random Hand-crafted Random
(50-submissions) (50-submissions) (10K Submissions)
Submission Strategy

18

o1-ioi (September 2024)

OpenAl

2000 A

1500 -

Elo / Percentile

500 A

Confidential and proprietary.

1000 -

Codeforces elo / percentile

2214 / 99th
2092 / 97th

1807 / 93rd
1673 / 89th

1258 / 62nd

808 / 11th

gptdo ol-preview ol ol-ioi ol-ioi ol-ioi
public test filtering full-test-time
strategy

19

o3-preview (December 2024)

OpenAl

Use generic 03-preview model for Ol
e Sample 1024 solutions
Pick top 50 solutions by longest test-time compute

Confidential and proprietary.

Score

400 4

350 4

300 A

250 1

150

100 4

50 4

101 Performance by Submission Strategy

395.64

362.14

213

ol-ioi ol-iol 03
(50-Submissions) (10K-Submissions) (50-Submissions)
Submission Strategy

20

o3-preview (December 2024)

OpenAl

Codeforces rating / percentile

2724 / 99.8th

2500 A
2214 / 98th

o 2000
£
)
©
0
O 1673 / 89th
S
Q
©
S 1500

1000 -

ol ol-ioi

Confidential and proprietary.

o3

21

o3-preview (December 2024)

OpenAl

03 vs best international competitors

VR80T e S e e e e
3500 L
o Y S e . B T UCIC O T FuC e K paa
= ‘e Atop 10
© .
® 3000 i
5 : I
" SR G SrC el
8 2500 Z ’.ﬁ.. :t.:’k:.‘..fc: :O. .
I,.‘.l'.,-- . .'i?j’.'f."f:. “““““““““““““ e L
2000 Byt -
”: : o.‘ . e .
3 s °
0 ' 60 ' 80 ' 100

solve rate (%)

Confidential and proprietary.

22

o3-preview (December 2024)

e Emergent behaviors

Error correction

Trying multiple strategies

Breaking down problems

Writing tests & comparing to slower solution

O O O O

def test_random_small():
import random
random.seed (1)
for n in range(1,5):
for m in range(l,n+1):

s = ''.join(random.choice('ab') for in range(n))

labels = solve_bruteforce_given_s(s,m)
for k in [1, len(labels)//2+1, len(labels)]:
k = max(1, min(k, len(labels)))
ans = solve_main(s,m,k)
brute_ans = labels[k-1]
if ans != brute_ans:
print("Mismatch on s:",s,"n",n,"m",m,"k",k,"expected",brute_ans,"got",ans)
return False
print("random small tests passed")

return True

test_random_small()

OpenAl Confidential and proprietary.

23

SWE-bench: real-world software issues from GitHub

OpenAl

SWE-bench Verified

70

60 -

501

40 -

Percent Correct

204

10 A

Confidential and proprietary.

41.3%

gptdo

ol-preview

Models

24

LLM Reasoning Challenges

OpenAl

Compute-hungry

Training data is limited

Reward / verifier hacking

Models generalize ... but not as good as humans

Hence new types of 10l problems can be more challenging

Confidential and proprietary.

25

OpenAl

Competitive Programming with Large Reasoning Models

OpenATI*

Abstract

We show that reinforcement learning applied to large language models (LLMs) significantly boosts
performance on complex coding and reasoning tasks. Additionally, we compare two general-purpose
reasoning models — OpenAl ol and an early checkpoint of 03 — with a domain-specific system, ol-
ioi, which uses hand-engineered inference strategies designed for competing in the 2024 International
Olympiad in Informatics (IOI). We competed live at IOI 2024 with ol-ioi and, using hand-crafted
test-time strategies, placed in the 49th percentile. Under relaxed competition constraints, ol-ioi
achieved a gold medal. However, when evaluating later models such as 03, we find that 03 achieves
gold without hand-crafted domain-specific strategies or relaxed constraints. Our findings show that
although specialized pipelines such as ol-ioi yield solid improvements, the scaled-up, general-purpose
03 model surpasses those results without relying on hand-crafted inference heuristics. Notably, o3
achieves a gold medal at the 2024 IOI and obtains a CODEFORCES rating on par with elite human
competitors. Overall, these results indicate that scaling general-purpose reinforcement learning,
rather than relying on domain-specific techniques, offers a robust path toward state-of-the-art Al in
reasoning domains, such as competitive programming.

https://arxiv.org/abs/2502.06807

Confidential and proprietary.

26

https://arxiv.org/abs/2502.06807

