OpenAl

From Competitive
Programming to Al
Reasoning Models

s Alexander Wei Q Oleg Murk

; ‘# Researcher, OpenAl ‘
Il A

Sheryl Hsu

Researcher, OpenAl Researcher, OpenAl




Com petitive Prog ramming Many at OpenAl have backgrounds in
at Open Al competitive programming.

- |
Jakub Pachocki Mark Chen
Chief Scientist, OpenAl Chief Research Officer, OpenAl

|OI’09 contestant IOI'24, 01’22 team leader

OpenAl Confidential and proprietary.



Com petitive Prog ramming Many at OpenAl have backgrounds in
a't Open A| competitive programming.

A few of us are here on-site in Sucre;:

Alexander Wei -y 4 Zheng Shao
IOI’15 contestant ;101’99 contestant

Oleg Murk
IOI’95, I0I'96, 101’97 contestant

Yaroslav Tverdokhlib
|OI’09 contestant

OpenAl Confidential and proprietary.



Com petitive Prog ramming Many at OpenAl have backgrounds in
at Open Al competitive programming.

A few of us are here on-site in Sucre;:

* Alexander Wei -y Zheng Shao
A 10115 contestant =, | 101’99 contestant

) Oleg Murk Yaroslav Tverdokhlib
4 01’95, 101’96, 101’97 contestant -"' |IOI’09 contestant

Several of us work on reasoning —

making models that can think for longer
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Competitive Programmers
and Al Research?

1. Constant learning. Al as a field progresses quickly;
you are always learning to think in new ways.
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Competitive Programmers
and Al Research?

1. Constant learning. Al as a field progresses quickly;
you are always learning to think in new ways.

2. Hard problem-solving. That’s research!

3. Systematic thinking. Even in deep learning, the right
concepts and theoretical foundations go a long way.

Every once in a while, | get to solve an algorithm design
problem too!
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Measuring Al Progress with
Competitive Programming

Competitive programming problems are:

1. Difficult — problems require significant
reasoning effort to solve

2. Objective — easily verifiable with
hidden test cases
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Measuring Al Progress with
Competitive Programming

Competitive programming problems are:

1. Difficult — problems require significant
reasoning effort to solve

2. Objective — easily verifiable with
hidden test cases

Exam GPT-4 (no vision)

Codeforces Rating 392 (below 5th)
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Al + Real-world Coding

Progress in reasoning transfers to
real-world programming.

OpenAl Confidential and proprietary.

What should we code next?

In my current project, find a bug in the last 5 commits and fix it

2 monorepo ¥ main

Tasks

Scan the entire repository and flag any variables, parameters, or properties whose n...

Convert non-critical components to React.lazy with Suspense fallbacks

ESLint on every PR and blocks on violations...

mport terminal sizes from terminal_emulator

1% open

o Merged
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Al + Real-world Coding

What should we code next?

In my current project, find a bug in the last 5 commits and fix it|

Progress in reasoning transfers to
real-world programming. e T

Scan the entire repository and flag any variables, parameters, or properties whose n...

Convert non-critical components to React.lazy with Suspense fallbacks

But real-world problems are also much s s on sy skt
more complex ...

-—

Codeforces Div. 2 A Ol problem
0.125 hours 2 hours
(GPT-4, April 2023) (03, April 2025)
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Al + Real-world Coding

What should we code next?

In my current project, find a bug in the last 5 commits and fix it|

Progress in reasoning transfers to
real-world programming. e T

Scan the entire repository and flag any variables, parameters, or properties whose n...

Convert non-critical components to React.lazy with Suspense fallbacks

But real-world problems are also much s s on sy skt
more complex ...

D B B —

Codeforces Div. 2 A |OI problem Research breakthrough
0.125 hours 2 hours 8,000 hours
(GPT-4, April 2023) (03, April 2025) (??7)
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OpenAl Large Language Models (LLMs)

e Base models: GPT4

Neural networks

Billions of parameters

Trained on GPUs

Transformer architecture

Next word / token prediction loss
Optimized using gradient descent
Pretrained on a subset of Internet

Input

O O 0O O O O O

e Reasoning models: o1, 03
Reinforcement Learning (RL)
Tasks with Verifiers

Hidden

O O O O

Agent

Chain of Thought (COT)
Tool use, eg python
State, Reward
St Tt

Environment

Action
Qs
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LLM Chain of Thought Example

Compute k-th Fibonacci number modulo K

Thought for a couple of seconds

e The user is asking about computing the k-th Fibonacci number modulo K. Since they didn’t
provide specific values, I'll explain the efficient fast doubling algorithm. This allows
computing Fibonacci mod K in O(log k) time. I'll include Python code and discuss the
Pisano period and complexity.

©® Done

To compute the k-th Fibonacci number modulo K —that is, find
Fk mod K

efficiently even for very large k—you can use the fast-doubling method, which runs in O(log k) time and

only needs constant extra space. The key identities are:

F2n :Fn (2Fn+1 _Fn)7
Fonyi = Fopy + F5.

Working everything “mod K" at each step keeps numbers small.

N

OpenAl Confidential and proprietary.
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LLM Performance Scaling

e Pre-training performance scales with:
o Amount of data
o Model size
o Train-time compute

o1 AIME accuracy
during training

100

e RL performance scales with: —

o Amount of tasks - .

. . o
o Traln-’Flme compute g 60 - L e
o Test-time compute S o o
| | S 40 *

e TJest-time strategies: g .

o Multiple samples 20

o Consensus

o Ranking function o4 - —

o 102 107 10°
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o1-ioi (September 2024)

e Train custom model for |0l starting from o1

o Programming tasks + Test suites

e Sample 10K solutions

o Split problems into separately gradable parts

e Filter by public tests

e (Generate test cases
o Sample generators from o1

e C(luster solutions
o That produce the same test outputs

e Rank clusters and submit top 50
o Learned ranking function

OpenAl Confidential and proprietary.
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o1-ioi (September 2024)

OpenAl

2000 A

1500 -

Elo / Percentile

500 A

Confidential and proprietary.

1000 -

Codeforces elo / percentile

2214 / 99th
2092 / 97th

1807 / 93rd
1673 / 89th

1258 / 62nd

808 / 11th

gptdo ol-preview ol ol-ioi ol-ioi ol-ioi
public test filtering full-test-time
strategy
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o3-preview (December 2024)

OpenAl

Use generic 03-preview model for Ol
e Sample 1024 solutions
Pick top 50 solutions by longest test-time compute

Confidential and proprietary.

Score
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o3-preview (December 2024)

OpenAl

Codeforces rating / percentile

2724 / 99.8th
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o3-preview (December 2024)

OpenAl

03 vs best international competitors
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o3-preview (December 2024)

e Emergent behaviors

Error correction

Trying multiple strategies

Breaking down problems

Writing tests & comparing to slower solution

O O O O

def test_random_small():
import random
random.seed (1)
for n in range(1,5):
for m in range(l,n+1):

s = ''.join(random.choice('ab') for in range(n))

labels = solve_bruteforce_given_s(s,m)
for k in [1, len(labels)//2+1, len(labels)]:
k = max(1, min(k, len(labels)))
ans = solve_main(s,m,k)
brute_ans = labels[k-1]
if ans != brute_ans:
print("Mismatch on s:",s,"n",n,"m",m,"k",k,"expected",brute_ans,"got",ans)
return False
print("random small tests passed")

return True

test_random_small()

OpenAl Confidential and proprietary.
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SWE-bench: real-world software issues from GitHub

OpenAl

SWE-bench Verified

70

60 -

501

40 -

Percent Correct

204

10 A
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41.3%

gptdo

ol-preview

Models
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LLM Reasoning Challenges

OpenAl

Compute-hungry

Training data is limited

Reward / verifier hacking

Models generalize ... but not as good as humans

Hence new types of 10l problems can be more challenging

Confidential and proprietary.
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OpenAl

Competitive Programming with Large Reasoning Models

OpenATI*

Abstract

We show that reinforcement learning applied to large language models (LLMs) significantly boosts
performance on complex coding and reasoning tasks. Additionally, we compare two general-purpose
reasoning models — OpenAl ol and an early checkpoint of 03 — with a domain-specific system, ol-
ioi, which uses hand-engineered inference strategies designed for competing in the 2024 International
Olympiad in Informatics (IOI). We competed live at IOI 2024 with ol-ioi and, using hand-crafted
test-time strategies, placed in the 49th percentile. Under relaxed competition constraints, ol-ioi
achieved a gold medal. However, when evaluating later models such as 03, we find that 03 achieves
gold without hand-crafted domain-specific strategies or relaxed constraints. Our findings show that
although specialized pipelines such as ol-ioi yield solid improvements, the scaled-up, general-purpose
03 model surpasses those results without relying on hand-crafted inference heuristics. Notably, o3
achieves a gold medal at the 2024 IOI and obtains a CODEFORCES rating on par with elite human
competitors. Overall, these results indicate that scaling general-purpose reinforcement learning,
rather than relying on domain-specific techniques, offers a robust path toward state-of-the-art Al in
reasoning domains, such as competitive programming.

https://arxiv.org/abs/2502.06807
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